Tìm kiếm khái niệm hóa học

Hãy nhập vào khái niệm bất kỳ để bắt đầu tìm kiếm

Những Điều Thú Vị Chỉ 5% Người Biết

Năng lượng ion hóa | Khái niệm hoá học

Năng lượng Ion hóa I là năng lượng cần tiêu tốn để tách một electron ra khỏi nguyên tử ở thể khí không bị kích thích. Năng lượng ion hóa là đại lượng đặc trưng cho khả năng nhường electron của nguyên tử, nghĩa là đặc trưng cho tính kim loại của nguyên tố. I càng nhỏ nguyên tử càng dễ nhường electron, do đó tính kim loại và tính khử của nguyên tố càng mạnh.


1. Khái niệm

Năng lượng Ion hóa I là năng lượng cần tiêu tốn để tách một electron ra khỏi nguyên tử ở thể khí không bị kích thích

X (k) + I X+(k) + e

Như vậy, năng lượng năng lượng ion hóa là đại lượng đặc trưng cho khả năng nhường electron của nguyên tử, nghĩa là đặc trưng cho tính kim loại của nguyên tố. I càng nhỏ nguyên tử càng dễ nhường electron, do đó tính kim loại và tính khử của nguyên tố càng mạnh. 

Năng lượng ion hóa thường được biểu diễn bằng kJ/ntg hay eV/nt. Khi biểu diễn bằng eV thì năng lượng ion hóa có trị số bằng thế ion hóa tính theo V

Năng lượng ion hóa được xác định dựa trên các dữ kiện thực nghiệm quang phổ.

Năng lượng ion hóa của nguyên tử phụ thuộc vào điện tích hạt nhân, số lượng tử chính n, tác dụng chắn hạt nhân của các electron bên ngoài. Khi điện tích hạt nhân và khả năng xâm nhập của electron bên ngoài tăng thì năng lượng ion hóa tăng. Ngược lại, khi số lượng tử chính và tác dụng chắn của các lớp electron bên trong tăng thì năng lượng ion hóa lại giảm. Như vậy, năng lượng ion hóa cũng phụ thuộc vào cấu trúc electron nguyên tử.

2. Sự biến đổi năng lượng ion hóa 

hinh-anh-nang-luong-ion-hoa-139-0

Đối với nguyên tử nhiều electron chúng ta sẽ có nhiều giá trị năng lượng ion hóa ứng với quá trình bứt electron thứ nhất (I1), thứ hai (I2), thứ ba (I3).... trong đó I1 < I2 < I3... Vì bây giờ việc bứt electron thứ hai, thứ ba... không phải ra khỏi nguyên tử mà là ra khỏi ion dương có điện tích +1, +2... do đó đòi hỏi phải tiêu tốn năng lượng lớn hơn.

Đặc trưng thay đổi tuần hoàn năng lượng ion hóa của các nguyên tố trong hệ thống tuần hoàn được thể hiện rõ trên đường cong biểu diễn sự phuộc của năng lượng tách electron thứ nhất ra khỏi nguyên tử (I1) vào điện tích hạt nhân nguyên tử của các nguyên tố. Chúng ta thấy, năng lượng ion hóa của các nguyên tố nói chung tăng dần từ đầu đến cuối chu kì, trong đó các nguyên tố s nhóm I có I1 nhỏ nhất, còn các nguyên tố p nhóm VIII có I1 lớn nhất.

Tuy nhiên, trên các đoạn đường cong ứng với sự tăng năng lượng ion hóa nói trên chúng ta thấy có những cực đại và cực tiểu nhỏ. Chẳng hạn đối với các chu kì II, III, IV những cực trị này xuất hiện ở các cặp nguyên tố: Be - B; N - O; Mg - Al; P-S; Zn - Ga, As - Se...

Nguyên tố Na đầu chu kì có I1 nhỏ nhất. Nguyên tố Mg tiếp theo có I1 lớn hơn là do sự tăng điện tích hạt nhân gây nên. Nhưng sự tăng tiếp tục điện tích hạt nhân ở nguyên tố sau Mg và Al không làm tăng I1 của nó. Sỡ dĩ như vậy là vì khi so sánh cấu tạo nguyên tử của các nguyên tố Mg và Al chúng ta thấy 2 electron phân lớp ngoài cùng (3s) của Mg có khả năng xâm nhập vào vùng gần hạt nhân sâu hơn electron phân lớp ngoài cùng 3p của Al nên chúng bị hạt nhân hút mạnh hơn electron này.

Mặt khác, do xâm nhập sâu hơn nên các electron 3s có tác dụng chắn hạt nhân nguyên tử đối với electron 3p. Như vậy, electron 3p của Al vừa ở xa hạt nhân hơn lại vừa bị chắn với hạt nhân mạnh hơn so với các electron 3s của Mg, do đó liên kết với hạt nhân nguyên tử kém bền hơn, đưa đến nguyên tố Al có I1 nhỏ hơn so với nguyên tố Mg. 

Đối với hai nguyên tố tiếp theo Al là Si và P năng lượng ion hóa lại tiếp tục tăng lên. Nguyên nhân của nó cũng là sự tăng điện tích hạt nhân. Nhưng đến đây, khi chuyển sang nguyên tố S tiếp theo năng lượng ion hóa lại giảm xuống. Điều này có thể được giải thích như sau: trong khi cấu trúc bán bão hòa 3p3 của P củng cố thêm độ bền của cấu hình 3s2 thì việc thêm một electron ghép đôi vào orbital 3p trong nguyên tử S lại dẫn đến giảm lực hút của hạt nhân do sự xuất hiện lực đẩy giữa hai electron có spin ngược nhau trên orbital 3p này.

Sau đó năng lượng ion hóa lại tiếp tục tăng lên đối với những nguyên tố còn lại của chu kì và đạt được giá trị cực đại ở nguyên tố cuối chu kì là Ar. Sự tăng I1 ở đây cũng do sự tăng điện tích hạt nhân gây nên. Cấu hình bão hòa s2p6 là cấu hình có tính đối xứng cao nhất và bền nhất, nên trong chu kì III Ar là nguyên tố có năng lượng ion hóa lớn nhất.

Sự thay đổi năng lượng ion hóa trong các phân nhóm chính (s và p) và phụ (d) xảy ra khác nhau. Trong các phân nhóm chính theo chiều tăng điện tích hạt nhân năng lượng ion hóa giảm, ngược lại trong phân nhóm phụ theo chiều này năng lượng ion hóa lại tăng. 

Sự giảm I1 trong các phân nhóm chính là do theo chiều tăng điện tích hạt nhân, số lớp electron tăng lên, đồng thời hiệu ứng chắn của các electron bên trong cũng tăng lên, tất cả điều này đưa đến giảm lực hút giữa hạt nhân và những electron bên ngoài. Còn sự tăng I1 trong phân nhóm phụ được giải thích bằng ưu thế của việc tăng điện tích hạt nhân và hiệu ứng xâm nhập của các electron s lớp ngoài cùng.

 

Tổng số đánh giá:

Xếp hạng: / 5 sao

Các khái niệm hoá học liên quan

Cơ chế phản ứng

Con đường chi tiết mà hệ các chất đầu đi qua để tạo ra sản phẩm phản ứng được gọi là cơ chế phản ứng. Cơ chế phản ứng cho biết các giai đoạn cơ bản của phản ứng, cách thức phân cắt liên kết cũ và hình thành liên kết mới, quá trình thay đổi cấu trúc của chất đầu dẫn tới sản phẩm...

Xem chi tiết

Phân hỗn hợp

Phân hỗn hợp là loại phân chứa cả 3 nguyên tố N, K, P hay còn gọi là phân NKP. Phân này được tạo ra nhờ trộn cả 3 loại phân đơn trên. Mức độ các loại phân tùy thuộc vào loại đất sử dụng và loại cây trồng sản xuất.

Xem chi tiết

Đồng

Đồng là nguyên tố hóa học ở ô thứ 29, chu kì 4, nhóm IB trong bảng hệ thống tuần hoàn, có kí hiệu hóa học là Cu. Đồng là kim loại dẻo và độ dẫn điện, dẫn nhiệt cao. Đồng nguyên chất mềm và dễ uốn, bề mặt đồng tươi có màu cam đỏ. Đồng được sử dụng làm chất dẫn điện và nhiệt, vật liệu xây dựng và thành phần của các hợp kim khác nhau.

Xem chi tiết

Liên kết hóa học

Liên kết hóa học là một trong những vấn đề cơ bản của hóa học.Có thể hiểu một cách đơn giản, liên kết hóa học là lực, giữ cho các nguyên tử cùng nhau trong các phân tử hay các tinh thể. Sự hình thành các liên kết hóa học giữa các nguyên tố để tạo nên phân tử được xét từ trong các thuyết đơn giản, thô sơ thời cổ đại cho tới các thuyết hiện đại ngày nay.

Xem chi tiết

Thuốc thử Tollens

Tollens Test là một phương pháp rất hữu ích để phân biệt giữa andehit và xeton. Phép thử định tính trong phòng thí nghiệm này còn được gọi là phép thử gương bạc.

Xem chi tiết
Xem tất cả khái niệm hoá học

Một số định nghĩa cơ bản trong hoá học.

Mol là gì?

Trong hóa học, khái niệm mol được dùng để đo lượng chất có chứa 6,022.10²³ số hạt đơn vị nguyên tử hoặc phân tử chất đó. Số 6,02214129×10²³ - được gọi là hằng số Avogadro.

Xem thêm

Độ âm điện là gì?

Độ âm điện là đại lượng đặc trưng định lượng cho khả năng của một nguyên tử trong phân tử hút electron (liên kết) về phía mình.

Xem thêm

Kim loại là gì?

Kim loại (tiếng Hy Lạp là metallon) là nguyên tố có thể tạo ra các ion dương (cation) và có các liên kết kim loại, và đôi khi người ta cho rằng nó tương tự như là cation trong đám mây các điện tử.

Xem thêm

Nguyên tử là gì?

Nguyên tử là hạt nhỏ nhất của nguyên tố hóa học không thể chia nhỏ hơn được nữa về mặt hóa học.

Xem thêm

Phi kim là gì?

Phi kim là những nguyên tố hóa học dễ nhận electron; ngoại trừ hiđrô, phi kim nằm bên phải bảng tuần hoàn.

Xem thêm

Những sự thật thú vị về hoá học có thể bạn chưa biết

Sự thật thú vị về Hidro

Hydro là nguyên tố đầu tiên trong bảng tuần hoàn. Nó là nguyên tử đơn giản nhất có thể bao gồm một proton trong hạt nhân được quay quanh bởi một electron duy nhất. Hydro là nguyên tố nhẹ nhất trong số các nguyên tố và là nguyên tố phong phú nhất trong vũ trụ.

Xem thêm

Sự thật thú vị về heli

Heli là một mặt hàng công nghiệp có nhiều công dụng quan trọng hơn bong bóng tiệc tùng và khiến giọng nói của bạn trở nên vui nhộn. Việc sử dụng nó là rất cần thiết trong y học, khí đốt cho máy bay, tên lửa điều áp và các tàu vũ trụ khác, nghiên cứu đông lạnh, laser, túi khí xe cộ, và làm chất làm mát cho lò phản ứng hạt nhân và nam châm siêu dẫn trong máy quét MRI. Các đặc tính của heli khiến nó trở nên không thể thiếu và trong nhiều trường hợp không có chất nào thay thế được heli.

Xem thêm

Sự thật thú vị về Lithium

Lithium là kim loại kiềm rất hoạt động về mặt hóa học, là kim loại mềm nhất. Lithium là một trong ba nguyên tố được tạo ra trong BigBang! Dưới đây là 20 sự thật thú vị về nguyên tố Lithium - một kim loại tuyệt vời!

Xem thêm

Sự thật thú vị về Berili

Berili (Be) có số nguyên tử là 4 và 4 proton trong hạt nhân của nó, nhưng nó cực kỳ hiếm cả trên Trái đất và trong vũ trụ. Kim loại kiềm thổ này chỉ xảy ra tự nhiên với các nguyên tố khác trong các hợp chất.

Xem thêm

Sự thật thú vị về Boron

Boron là nguyên tố thứ năm của bảng tuần hoàn, là một nguyên tố bán kim loại màu đen. Các hợp chất của nó đã được sử dụng hàng nghìn năm, nhưng bản thân nguyên tố này vẫn chưa bị cô lập cho đến đầu thế kỉ XIX.

Xem thêm

So sánh các chất hoá học phổ biến.

Na2SeO4Na2SeO3

Điểm khác nhau về tính chất vật lý, hoá học giữa chất Natri selenat và chất Natri selenit

Xem thêm

TeO2Na4P2O7

Điểm khác nhau về tính chất vật lý, hoá học giữa chất Telua dioxit và chất Natri pyrophosphat

Xem thêm

Mg2P2O7K[Cr(OH)4]

Điểm khác nhau về tính chất vật lý, hoá học giữa chất Magie Pyrophosphat và chất kali tetrahydroxocrom(III)

Xem thêm

K3[Fe(OH)6]K3[FeCN)6]

Điểm khác nhau về tính chất vật lý, hoá học giữa chất Kali hexahydroxoferrat(III) và chất Kali ferricyanua

Xem thêm

Liên Kết Chia Sẻ

** Đây là liên kết chia sẻ bới cộng đồng người dùng, chúng tôi không chịu trách nhiệm gì về nội dung của các thông tin này. Nếu có liên kết nào không phù hợp xin hãy báo cho admin.

Khám Phá Tin Tức Thú Vị Chỉ 5% Người Biết

Cập Nhật 05/10/2024